

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

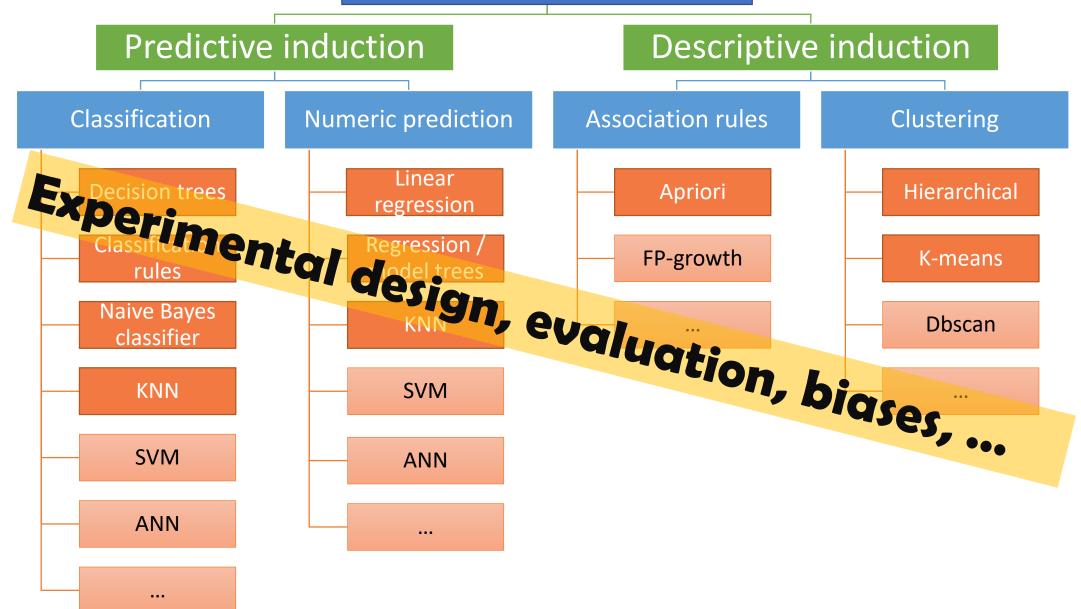
INFORMATION AND COMMUNICATION TECHNOLOGIES PhD study programme

Data Mining and Knowledge Discovery

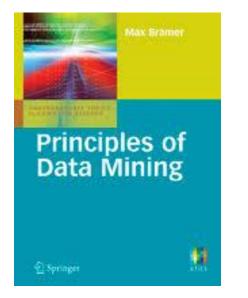
Petra Kralj Novak November 17, 2020

http://kt.ijs.si/petra_kralj/dmkd3.html

Data mining techniques



Bramer, Max. (2007). Principles of Data Mining. 10.1007/978-1-84628-766-4.



Data for Data Mining
 Introduction to Classification: Naïve Bayes and Nearest Neighbour
 Using Decision Trees for Classification
 Decision Tree Induction: Using Entropy for
 Decision Tree Induction: Using Frequency
 Continuous Attributes
 Avoiding Overfitting of Decision Trees
 More About Entropy
 Inducing Modular Rules for Classification
 Measuring the Performance of a Classifier
 Association Rule Mining I
 Association Rule Mining II
 Clustering
 Text Mining

- Basic chapters about classification: 1, 2, 3, 4, 6, 8, 11
- Necessary prerequisite also for the course by prof. dr. Sašo Džeroski, doc. dr. Panče Panov: Computational Scientific Discovery from Structured, Spatial and Temporal Data

Hands-on

orange

• Open source machine learning and data visualization

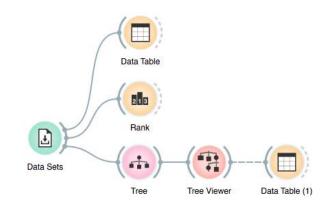
- Interactive data analysis workflows with a large toolbox
- Visual programming
- Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: Data Mining Toolbox in Python, JMLR 14(Aug): 2349–2353.

learn

- scikit-learn is Gold standard of Python machine learning
- Simple and efficient tools for data mining and data analysis
- Well documented
- Pedregosa et al. (2011) Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830.

K Keras

- Neural-network library written in Python.
- Chollet, F. et al. (2015) "Keras"

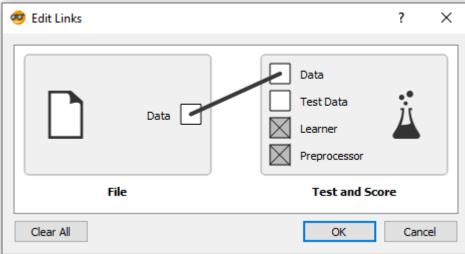


- Open source machine learning and data visualization
 - Software: https://orange.biolab.si/
 - Datasets: http://file.biolab.si/datasets/
 - Tutorials: <u>https://www.youtube.com/channel/UCIKKWBe2SCAEyv7ZNGhIe4g</u>
- Interactive data analysis workflows
- Visual programming
- Based on numpy, scipy and scikit-learn, GUI: Qt framework

- Widgets: building blocks of data analysis workflows that are assembled in Orange's visual programming environment.
- A typical workflow may mix widgets for data manipulation, visualization, modeling, evaluation, ...
- Widgets have inputs and outputs (typically data objects, learner objects, classifier objects, ...) and parameters

Data Test and Score OSC. Model → Tree -Tree Tree Viewer - Tree ? \times Name Tree Parameters \times ? Induce binary tree Min. number of instances in leaves: 2 ≑ Do not split subsets smaller than: 5 ≑ Limit the maximal tree depth to: 100 ≑ Classification Stop when majority reaches [%]: 95 ≑ \checkmark Apply Automatically Cancel 28

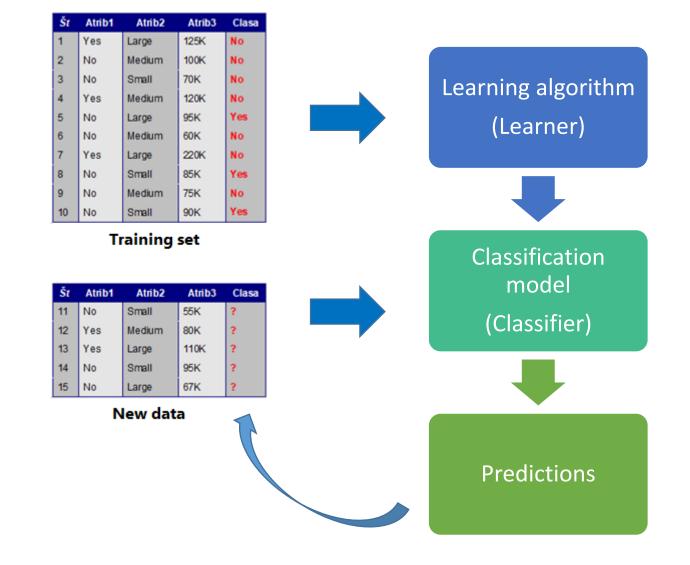
• Interactive



File

Classification

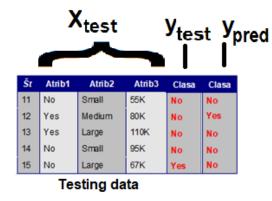
The basic classification schema



- A classifier is a function that maps from the attributes to the classes
 - Classifier(attributes) = Classes
 - f(X) = y
- In training, the attributes and the classes are known (training examples) and we are learning a mapping function f (the classifier)
 ?(X) = y
- When predicting, both the attributes and the classifier are known, and we are assigning the classes
 - f(X) = ?
- What about evaluation?

The basic classification schema - evaluation

Training set

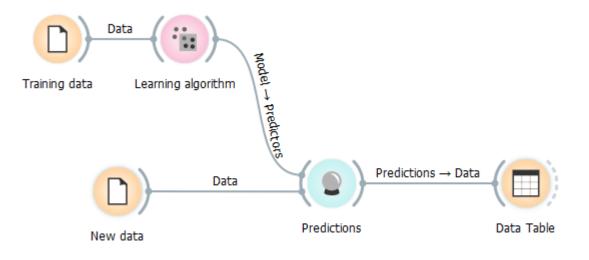


- When evaluating, f, X and y are known. We compute the predictions y_p = f(X) and evaluate the difference between Y and Y_p.
- Train and test data:

Xtrain, Xtest, Ytrain, Ytest

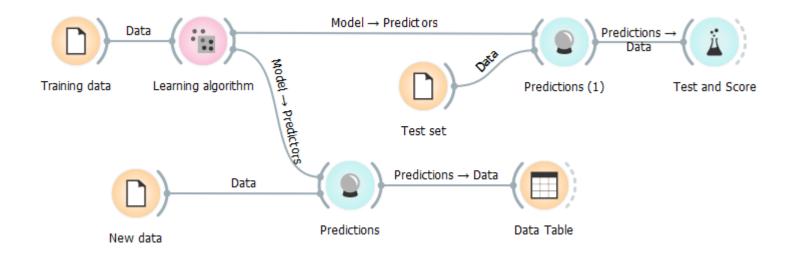
Basic classification schema in Orange

- We train the model on the train set
- We predict the target for the new instances
- There are several classification algorithms:
 - Decision trees
 - Naive Bayes classifier
 - K nearest neighbors (KNN)
 - Artificial neural networks (ANN)
 -



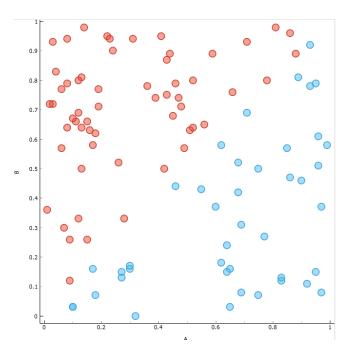
Classification with evaluation

- We train the model on the train set
- We evaluate on the test set
- We classify the new instances

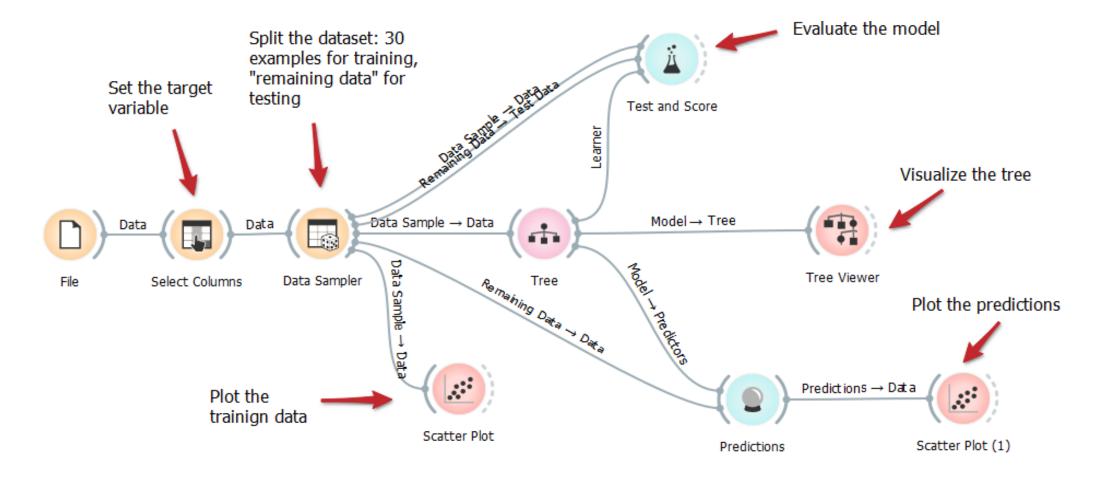


Lab exercise: Decision trees & Language bias

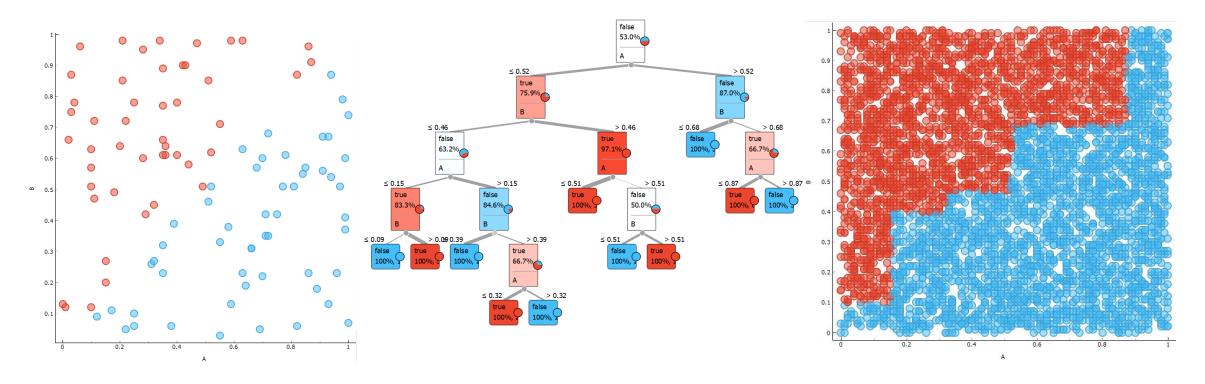
- Use the dataset A-greater-then-B.csv from http://source.ijs.si/pkraljnovak/DM_course
 - Attributes A, B and C have random values
 - Target variable "A>B", has value "true" if A>B else "false"
- Use Orange trees to predict "A>B" from the attributes A, B in C
 - Use separate test set for validation (Widget Data Sampler)
 - Plot the training and classified data in "Scatter Plot"
- How good is your model?
- How does the training set size influence the model performance?



Lab exercise: Decision trees & Language bias



Lab exercise: Decision trees & Language bias

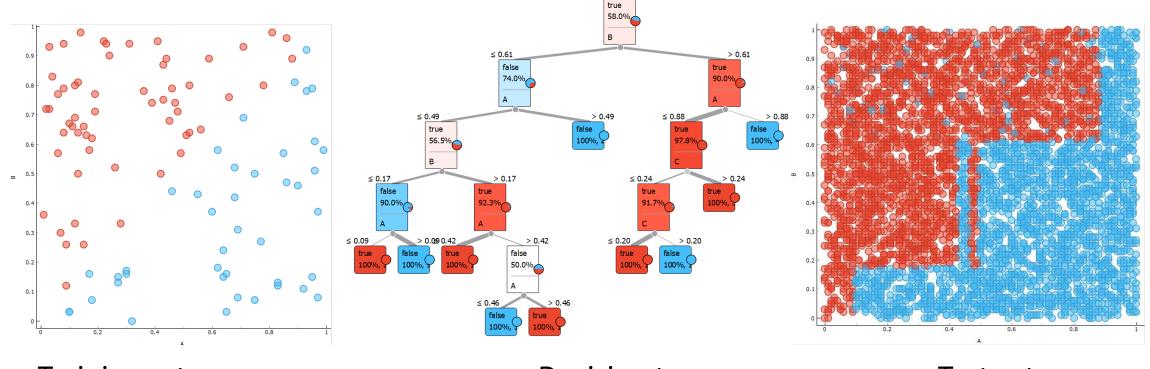


Training set

Decision tree

Test set

Same program, different random seed



Training set

Decision tree

Test set

How to overcome this

- Feature engineering
 - Create a new feature A>B
 - Examples
 - We have a person's height and body mass
 - ightarrow Create a new attribute BMI (bod mass index)
 - We have income and outcome data
 → Create a new attribute "profit"
- Ensemble
 - We build more models that vote for the final classification
 - Random forest: Several trees built on different subsets od the training set
 - On the "A>B" example, decision trees achieve CA 88,2% while random forest 90,8%
 - As a general rule, classifier ensembles always outperform single classifiers
- Use other classifiers
 - Linear classifier, SVM with linear kernel....

$$BMI = \frac{Weight(kg)}{[Height(m)]^2}$$

Basic classification in scikit

```
csvFileName = r".\Datasets\A-greater-then-B.csv"
df = pd.read csv(csvFileName)
feature cols = ['A', 'B', 'C']
target var = 'A>B'
X = df[feature cols].values
y = df[target var].values
X train, X test, y train, y test = train test split(X, y, test size=0.1, random state=42)
decision tree = tree.DecisionTreeClassifier()
decision tree.fit(X train, y train)
y pred = decision tree.predict(X test)
accuracy = metrics.accuracy score(y_test, y_pred)
```

Basic classification in scikit

```
csvFileName = r".\Datasets\A-greater-then-B.csv"
df = pd.read_csv(csvFileName)
feature_cols = ['A', 'B', 'C']
target_var = 'A>B'
X = df[feature_cols].values
y = df[target_var].values
```

Α	В	С	A>B
0.953725	0.544997	0.854959	TRUE
0.490541	0.953735	0.200973	FALSE
0.987391	0.524999	0.092299	TRUE
0.074883	0.145092	0.158558	FALSE
0.215517	0.003417	0.441095	TRUE
0.993418	0.69765	0.535384	TRUE
0.90678	0.787445	0.043996	TRUE
0.22488	0.316079	0.542245	FALSE
0.478895	0.262404	0.505151	TRUE
0.348876	0.77149	0.946645	FALSE
0.092137	0.563398	0.245223	FALSE
0.177709	0.068787	0.88188	TRUE
0.794501	0.546356	0.087682	TRUE
0.535652	0.797198	0.449511	FALSE
0.998743	0.904471	0.609526	TRUE
0.378494	0.969959	0.421158	FALSE

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

```
decision tree = tree.DecisionTreeClassifier()
```

```
decision_tree.fit(X_train, y_train)
```

```
y_pred = decision_tree.predict(X_test)
```

accuracy = metrics.accuracy_score(y_test, y_pred)

Scikit documentation

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

sklearn.tree.DecisionTreeClassifier

class sklearn.tree. DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0) [source]

A decision tree classifier.

Read more in the User Guide.

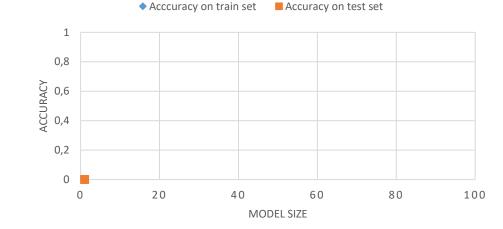
Parameters:	criterion : {"gini", "entropy"}, default="gini" The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain.			
	splitter : {"best", "random"}, default="best"			
	The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.			
	max_depth : <i>int, default=None</i>			
	The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.			
	min_samples_split : <i>int or float, default=2</i>			
	The minimum number of samples required to split an internal node:			
	• If int, then consider min_samples_split as the minimum number.			
	 If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split. 			

Home assignment

Model complexity (e.g. number of leafs) vs. accuracy on train and test set Datasets:

- A-greater-then-B.csv
- Another reasonably sized classification dataset from http://file.biolab.si/datasets/

You can start from the samples of code from the gitlab repository http://source.ijs.si/pkraljnovak/DM course ACCURACY VS. MODEL COMPLEXITY



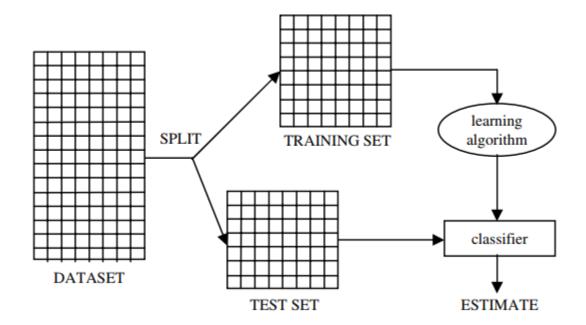
Evaluation

How good is the model

Evaluation goal

- How good is the model
- Method
 - HOW we measure?
- Metric
 - WHAT we measure?

Method: Test on a separate test set



Stratified sampling

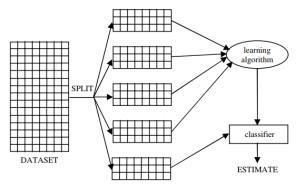
• Stratified sampling aims at splitting one data set so that each split are similar with respect to the target variable distribution.

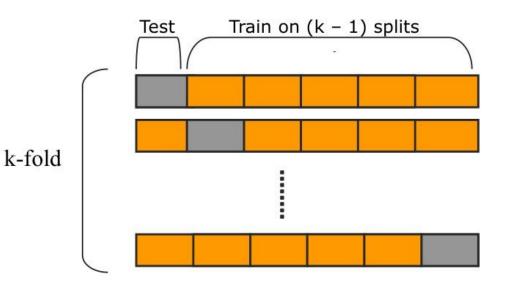
Method: Random sampling

- Repeat several times "Test on a separate test set" with different test set selections
- Compute the mean, variance on the results ...
- The evaluation is more robust as it does not depend so much on a single random split

Method: K-fold cross validation

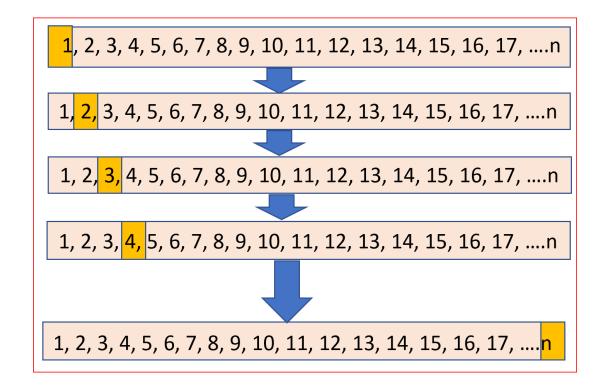
- Most commonly used in machine learning
- Split the dataset into k (disjunctive) subsets
- Repeat *k*-times:
 - Use a different subset for testing
 - Use all the other data for training
- Each example is in the test set just once





Method: Leave one out (N-fold cross-validation)

- For small datasets
- Similar to cross validation with test set size =1
- Repeat the training N-times if there is N examples in the dataset



Evaluation methods in Orange

- Test & Score
- Cross validation
- Random sampling
- Leave one out
- Test on train data
- Test on test data

	Sampling
_	O Cross validation
	Number of folds: 10 🔻
	Stratified
	O Cross validation by feature
	•
	O Random sampling
	Repeat train/test: 10 🔻
	Training set size: 66 % 🔻
	Stratified
	O Leave one out
	 Test on train data
	Test on test data

Questions

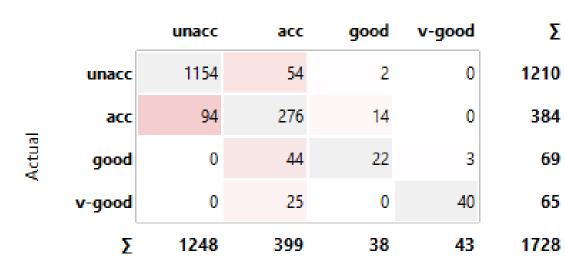
• What are properties of the results when testing on the training set?

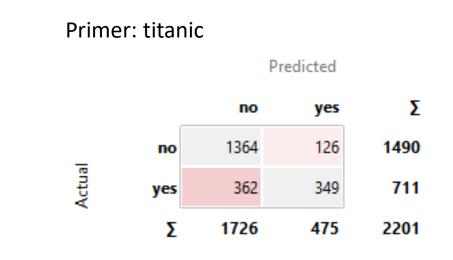
Classification quality measures

Confusion matrix (error matrix)

Breakdown of the classifier's performance, i.e. how frequently instances of class X were correctly classified as class X or misclassified as some other class.

Primer: car

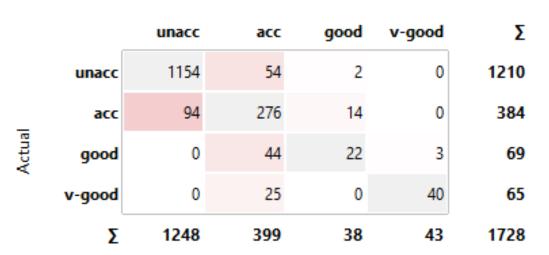




Predicted

Confusion matrix

- Matrix of correct and incorrect classifications
 - Rows are actual values
 - Columns are predicted values
 - Correct classifications are on the diagonal



Predicted

Confusion matrix for two classes

Predicted

	Correct classification	Classified as	
		+	_
Actual	+	true positives	false negatives
	_	false positives	true negatives

TP: true positives

The number of positive instances that are classified as positive

FP: false positives

The number of negative instances that are classified as positive

FN: false negatives

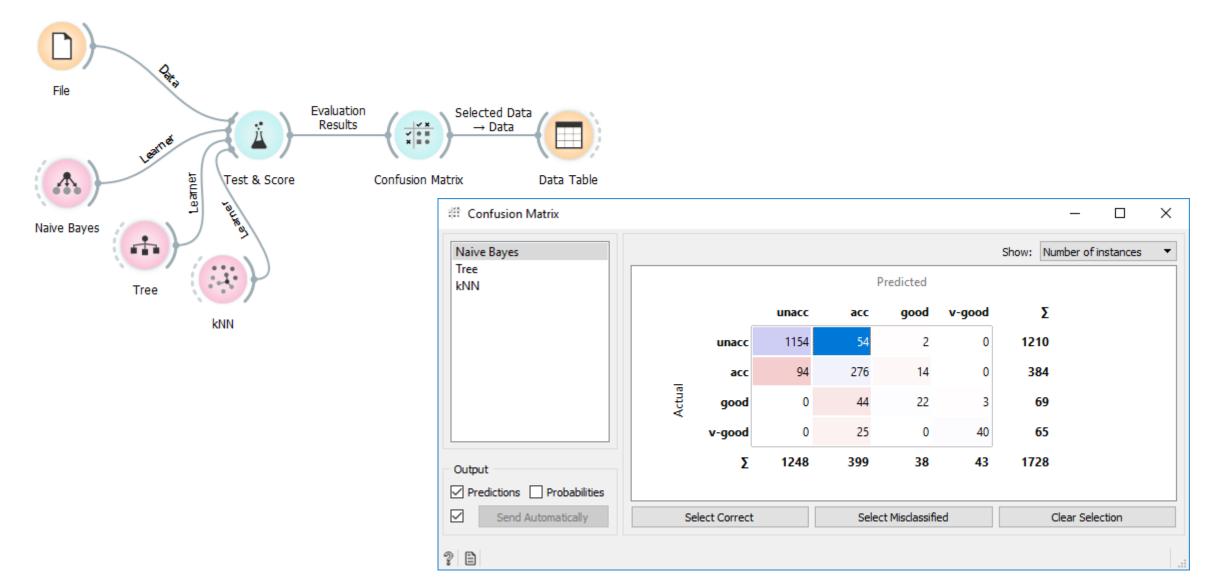
The number of positive instances that are classified as negative

TN: true negatives

The number of negative instances that are classified as negative

- Diagonal: correct classifications
- Outside: misclassifications
- Classification accuracy =
- = |correct classifications| / |all examples|
- = |correct classifications| / (|correct classifications| + |misclassifications|)

In Orange, the confusion matrix is interactive



Classification accuracy

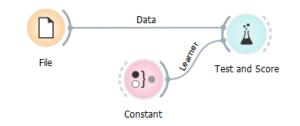
• Percentage of correctly classified examples

Classification accuracy =

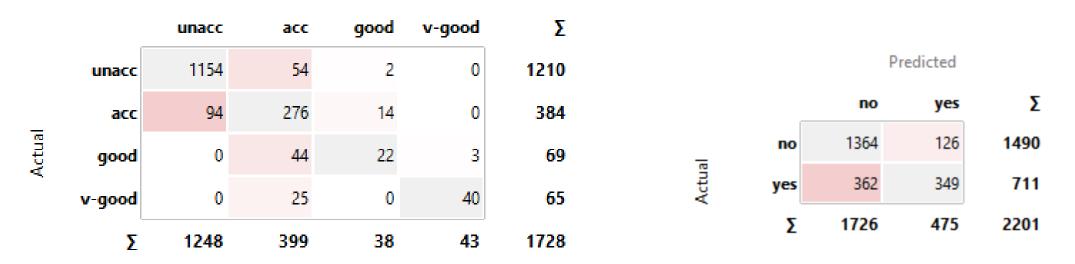
- = |correct classifications| / |all examples|
- = |correct classifications| / (|correct classifications| + |misclassifications|)

Question

• When is classification accuracy "good"?



Majority class classifier (Constant)



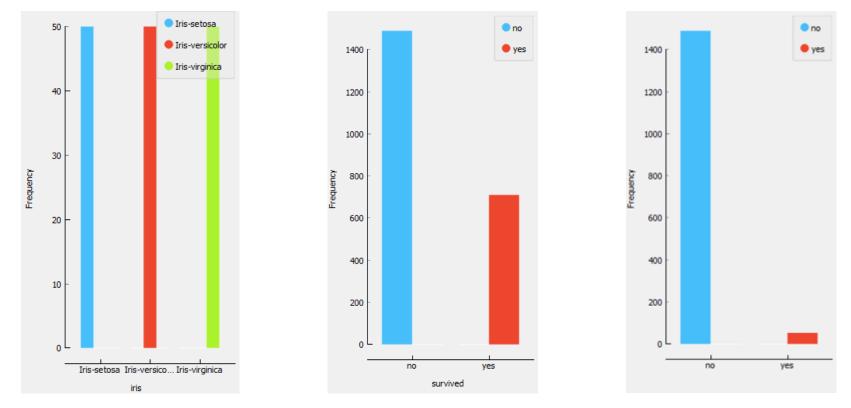
Predicted

- What is the classification accuracy of a classifier that classifies all the examples in the majority class?
- Car: 70%

Titanic: 68%

Imbalanced Data and Unequal Misclassification Costs

- Imbalanced dataset: One class is minority compared to the other(s)
 - The minority class is usually the one of interest



Imbalanced Data and Unequal Misclassification Costs

- Imbalanced dataset: One class is minority compared to the other(s)
 - The minority class is usually the one of interest
- Unequal misclassification costs:
 - Some errors are more costly (have more severe consequences)
- Examples:
 - Screening tests (nuchal scan, Zora, Dora, Svit, ...)

ORŽAVNI PROGRAM PRESEJANJA IN ZGODNJEGA ODKRIVANJA PREDRAKAVIH SPREMEMU IN RAKA NA DEBELEM ČREVESU IN DANKI

- Intrusion detection
- Credit card fraud

Exercise: Credit card fraud

"FED report notes the fraud rate for debit and prepaid signature transactions in 2012 was approximately 4.04 basis points (bps), or about **four per every 10,000 transactions**."

- What is the classification accuracy of a classifier that classifies all the examples a "not fraudulent"?
 - Answer: 99.96%
- Can a classifier with a 97% accuracy "better" then the one with classification accuracy 99.96%?

Exercise: Credit card fraud

Two confusion matrices for two classifiers

		Pred		
		Fraud	Not fraud	
Actual	Fraud	0	4	4
Act	Not fraud	0	9996	9996
		0	10000	10000
		Pred	icted	
		Fraud	Not fraud	
Actual	Fraud	4	0	4
Act	Not fraud	300	9696	9996
		304	9696	10000

Classification accuracy

• CA = (0 + 9996)/10000 = 99.96%

• CA = (4 + 9696)/10000 = 97.00%

A model with a worse classification accuracy compared to the majority class is better.

Precision, Recall & F1

- Class-specific metrics
 - Precision (Positive Predictive Value)
 - Proportion of instances classified as positive that are really positive
 - Recall (True Positive Rate, TP Rate, Hit Rate, Sensitivity)
 - The proportion of positive instances that are correctly classified as positive
 - F1
 - Harmonic mean of precision and recall

 $F_1 = 2 * \frac{precision * recall}{precision + recall}$

 We can average the metrics over the classes (macro average) or weigh them by the number of examples (micro average)

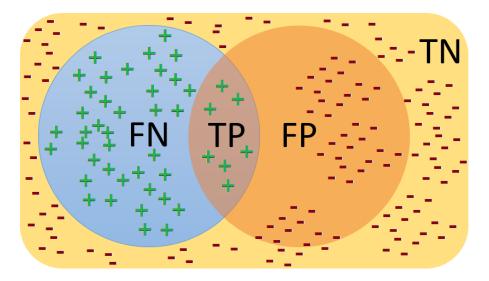
Precision and Recall

PRECISION

• Out of all the examples the classifier labeled as positive, what fraction were correct?

RECALL

• Out of all the positive examples there were, what fraction did the classifier pick up?



		Predicted class		Total
		+	_	instances
Actual class	+	TP	FN	Р
	_	FP	TN	Ν

TP/PThe proportion of True Positive • Priklic Rate positive instances that or Hit Rate are correctly classified as or Recall positive or Sensitivity or TP Rate Precision TP/(TP+FP)Proportion of instances or Positive classified as positive that Natančnost Predictive Value are really positive F1 Score $(2 \times \text{Precision} \times \text{Recall})$ A measure that combines • Mera F1 (Precision + Recall)Precision and Recall Klasifikacijska The proportion of (TP + TN)/(P + N)Accuracy or Predictive instances that are točnost correctly classified Accuracy

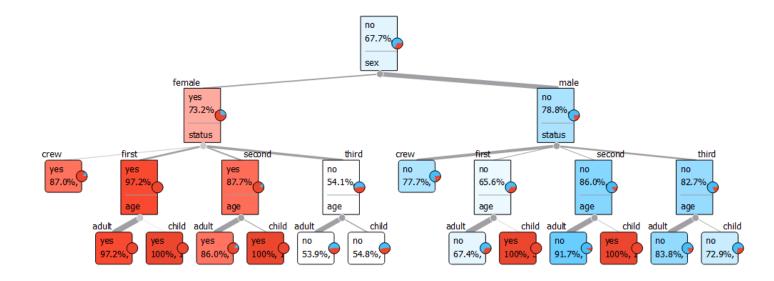
Precision, recall, F1

ROC

Bramer (2007), chapter 11: Measuring the Performance of a Classifier Fawcett, Tom. "An introduction to ROC analysis." Pattern recognition letters 27.8 (2006): 861-874.

High precision and/or high recall?

- Can we make a model more precise (increase precision)?
- How sure is the model about a certain prediction?
- We can set different thresholds and get different binary classifiers.
- Find a trade-off between precision and recall appropriate for a problem at hand.



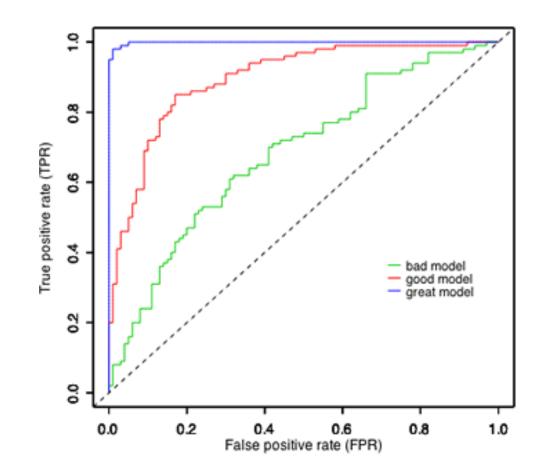
Probabilistic classification

- A probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to.
- Ranking
- Tresholds/cutpoints

		Confidence classifier
	Actual class	forclass Y
P1	Y	1
P2	Y	1
P3	Y	0.95
P4	Y	0.9
P5	Y	0.9
P6	N	0.85
P7	Y	0.8
P8	Y	0.6
P9	Y	0.55
P10	Y	0.55
P11	N	0.3
P12	N	0.25
P13	Y	0.25
P14	N	0.2
P15	N	0.1
P16	N	0.1
P17	N	0.1
P18	N	0
P19	N	0
P20	N	0

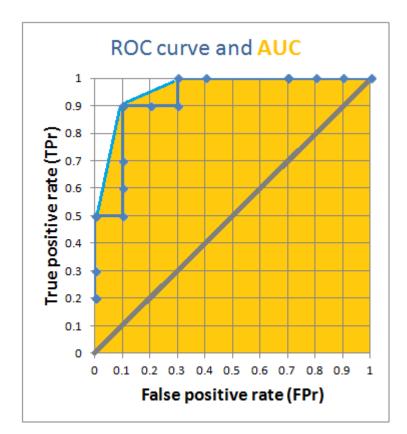
ROC curve and AUC

- Receiver Operating Characteristic curve (or ROC curve) is a plot of the true positive rate (TPr=Sensitivity=Recall) against the false positive rate (FPr) for different possible cut-points.
- It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity).
- The closer the curve to the top left corner, the "better" the classifier.
- The diagonal represents the random classifiers (predicting the positive class with some probability regardless the data).



AUC - Area Under (ROC) Curve

- Performance is measured by the area under the ROC curve (AUC). An area of 1 represents a perfect classifier; an area of 0.5 represents a worthless classifier.
- The area under the curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive example higher than a randomly chosen negative example.

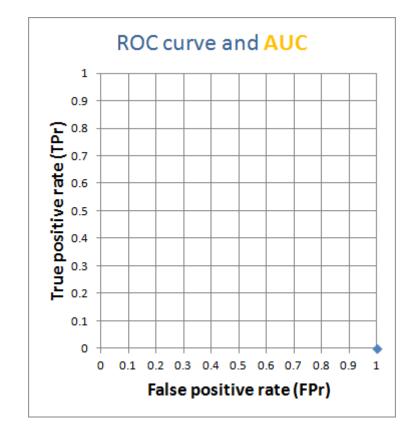


Exercise: ROC curve and AUC

		Confidence classifier				
	Actual class	forclass Y	FP	ТР	FPr	TPr
P1	Y	1				
P2	Y	1				
Р3	Y	0.95				
P4	Y	0.9				
Р5	Y	0.9				
P6	N	0.85				
Р7	Y	0.8				
P8	Y	0.6				
Р9	Y	0.55				
P10	Y	0.55				
P11	N	0.3				
P12	N	0.25				
P13	Y	0.25				
P14	N	0.2				
P15	N	0.1				
P16	N	0.1				
P17	N	0.1				
P18	N	0				
P19	N	0				
P20	N	0				

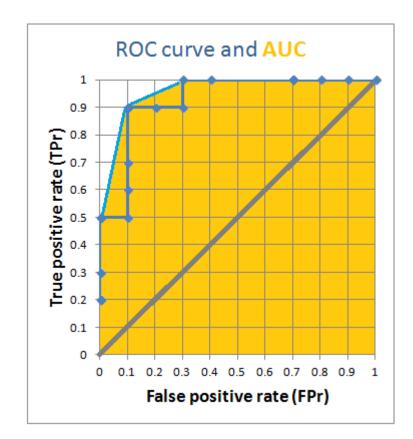
ROC curve and AUC

		Classifier confidence				
	Actual class	forclass Y	FP	ТР	FPr	TPr
P1	Y	1	0	2	0	0.2
P2	Y	1	0	2	0	0.2
Р3	Y	0.95	0	3	0	0.3
P4	Y	0.9	0	5	0	0.5
P5	Y	0.9	0	5	0	0.5
P6	N	0.85	1	5	0.1	0.5
P7	Y	0.8	1	6	0.1	0.6
P8	Y	0.6	1	7	0.1	0.7
Р9	Y	0.55	1	9	0.1	0.9
P10	Y	0.55	1	9	0.1	0.9
P11	N	0.3	2	9	0.2	0.9
P12	N	0.25	3	9	0.3	0.9
P13	Y	0.25	3	10	0.3	1
P14	N	0.2	4	10	0.4	1
P15	N	0.1	7	10	0.7	1
P16	N	0.1	7	10	0.7	1
P17	N	0.1	7	10	0.7	1
P18	N	0	8	10	0.8	1
P19	N	0	9	10	0.9	1
P20	Ν	0	10	10	1	1



ROC curve and AUC

		Classifier confidence				
	Actual class	forclass Y	FP	ТР	FPr	TPr
P1	Y	1	0	2	0	0.2
P2	Y	1	0	2	0	0.2
Р3	Y	0.95	0	3	0	0.3
P4	Y	0.9	0	5	0	0.5
P5	Y	0.9	0	5	0	0.5
P6	N	0.85	1	5	0.1	0.5
P7	Y	0.8	1	6	0.1	0.6
P8	Y	0.6	1	7	0.1	0.7
Р9	Y	0.55	1	9	0.1	0.9
P10	Y	0.55	1	9	0.1	0.9
P11	N	0.3	2	9	0.2	0.9
P12	N	0.25	3	9	0.3	0.9
P13	Y	0.25	3	10	0.3	1
P14	N	0.2	4	10	0.4	1
P15	N	0.1	7	10	0.7	1
P16	N	0.1	7	10	0.7	1
P17	N	0.1	7	10	0.7	1
P18	N	0	8	10	0.8	1
P19	N	0	9	10	0.9	1
P20	Ν	0	10	10	1	1



Area Under (the convex) Curve AUC = 0.96

ROC curve properies

- Universal baselines: the major diagonal of an ROC plot depicts the line of random performance which can be achieved without training.
- Linear interpolation: any point on a straight line between two points representing the performance of two thresholds A and B can be achieved by making a suitably biased random choice between A and B
- **Optimality**: a point D dominates another point E if D's tpr and fpr are not worse than E's and at least one of them is strictly better.
- Area: the area under the ROC curve (AUROC) estimates the probability that a randomly chosen positive is ranked higher by the model than a randomly chosen negative

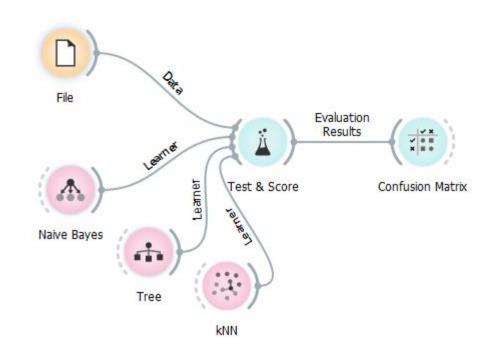
Flach, Peter, and Meelis Kull. "Precision-recall-gain curves: PR analysis done right." *Advances in neural information processing systems*. 2015.

Classification evaluation in Orange

• AUC

- Area under curve
- AUROC
- Površina pod ROC krivuljo
- CA classification accuracy
 - Klasifikacijska točnost
- F1 harmonično povprečje priklica in natančnosti
- Precision natančnost
- Recall priklic

Evaluation Results					
Method	AÛC	CA	F1	Precision	Recall
kNN	0.951	0.845	0.823	0.835	0.845
Naive Bayes	0.971	0.863	0.858	0.859	0.863
Tree	0.991	0.951	0.951	0.951	0.951



sklearn.metrics: Metrics ¶

<pre>metrics.accuracy_score(y_true, y_pred[,])</pre>	Accuracy classification score.
<pre>metrics.auc(x, y)</pre>	Compute Area Under the Curve (AUC) using the trapezoidal rule
<pre>metrics.average_precision_score(y_true, y_score)</pre>	Compute average precision (AP) from prediction scores
<pre>metrics.balanced_accuracy_score(y_true, y_pred)</pre>	Compute the balanced accuracy
<pre>metrics.brier_score_loss(y_true, y_prob[,])</pre>	Compute the Brier score.
<pre>metrics.classification_report(y_true, y_pred)</pre>	Build a text report showing the main classification metrics
<pre>metrics.cohen_kappa_score(y1, y2[, labels,])</pre>	Cohen's kappa: a statistic that measures inter-annotator agreement.
<pre>metrics.confusion_matrix(y_true, y_pred[,])</pre>	Compute confusion matrix to evaluate the accuracy of a classification.
<pre>metrics.dcg_score(y_true, y_score[, k,])</pre>	Compute Discounted Cumulative Gain.
<pre>metrics.f1_score(y_true, y_pred[, labels,])</pre>	Compute the F1 score, also known as balanced F-score or F-measure
<pre>metrics.fbeta_score(y_true, y_pred, beta[,])</pre>	Compute the F-beta score
<pre>metrics.hamming_loss(y_true, y_pred[,])</pre>	Compute the average Hamming loss.
<pre>metrics.hinge_loss(y_true, pred_decision[,])</pre>	Average hinge loss (non-regularized)
<pre>metrics.jaccard_score(y_true, y_pred[,])</pre>	Jaccard similarity coefficient score
<pre>metrics.log_loss(y_true, y_pred[, eps,])</pre>	Log loss, aka logistic loss or cross-entropy loss.
<pre>metrics.matthews_corrcoef(y_true, y_pred[,])</pre>	Compute the Matthews correlation coefficient (MCC)
<pre>metrics.multilabel_confusion_matrix(y_true,)</pre>	Compute a confusion matrix for each class or sample
<pre>metrics.ndcg_score(y_true, y_score[, k,])</pre>	Compute Normalized Discounted Cumulative Gain.
<pre>metrics.precision_recall_curve(y_true,)</pre>	Compute precision-recall pairs for different probability thresholds
<pre>metrics.precision_recall_fscore_support()</pre>	Compute precision, recall, F-measure and support for each class
<pre>metrics.precision_score(y_true, y_pred[,])</pre>	Compute the precision
<pre>metrics.recall_score(y_true, y_pred[,])</pre>	Compute the recall
<pre>metrics.roc_auc_score(y_true, y_score[,])</pre>	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
<pre>metrics.roc_curve(y_true, y_score[,])</pre>	Compute Receiver operating characteristic (ROC)
<pre>metrics.zero_one_loss(y_true, y_pred[,])</pre>	Zero-one classification loss.

21 measures of accuracy from scikit-learn documentation for Classification problems

Some of these are restricted to the binary classification case:

 precision_recall_curve (y_true, probas_pred)
 Compute precision-recall pairs for different probability thresholds

 roc_curve (y_true, y_score[, pos_label, ...])
 Compute Receiver operating characteristic (ROC)

 balanced_accuracy_score (y_true, y_pred[, ...])
 Compute the balanced accuracy

Others also work in the multiclass case:

<pre>cohen_kappa_score (y1, y2[, labels, weights,])</pre>	Cohen's kappa: a statistic that measures inter-annotator agreement.
<pre>confusion_matrix (y_true, y_pred[, labels,])</pre>	Compute confusion matrix to evaluate the accuracy of a classification
<pre>hinge_loss (y_true, pred_decision[, labels,])</pre>	Average hinge loss (non-regularized)
<pre>matthews_corrcoef (y_true, y_pred[,])</pre>	Compute the Matthews correlation coefficient (MCC)

Some also work in the multilabel case:

<pre>accuracy_score (y_true, y_pred[, normalize,])</pre>	Accuracy classification score.
<pre>classification_report (y_true, y_pred[,])</pre>	Build a text report showing the main classification metrics
<pre>f1_score (y_true, y_pred[, labels,])</pre>	Compute the F1 score, also known as balanced F-score or F- measure
<pre>fbeta_score (y_true, y_pred, beta[, labels,])</pre>	Compute the F-beta score
<pre>hamming_loss (y_true, y_pred[, labels,])</pre>	Compute the average Hamming loss.
<pre>jaccard_score (y_true, y_pred[, labels,])</pre>	Jaccard similarity coefficient score
<pre>log_loss (y_true, y_pred[, eps, normalize,])</pre>	Log loss, aka logistic loss or cross-entropy loss.
<pre>multilabel_confusion_matrix (y_true, y_pred)</pre>	Compute a confusion matrix for each class or sample
<pre>precision_recall_fscore_support (y_true, y_pred)</pre>	Compute precision, recall, F-measure and support for each class
<pre>precision_score (y_true, y_pred[, labels,])</pre>	Compute the precision
<pre>recall_score (y_true, y_pred[, labels,])</pre>	Compute the recall
<pre>zero_one_loss (y_true, y_pred[, normalize,])</pre>	Zero-one classification loss.

And some work with binary and multilabel (but not multiclass) problems:

<pre>average_precision_score (y_true, y_score[,])</pre>	Compute average precision (AP) from prediction scores
<pre>roc_auc_score (y_true, y_score[, average,])</pre>	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

21 measures of accuracy from scikit-learn documentation for Classification problems

Félix Revert: The proper way to use Machine Learning metrics

https://towardsdatascience.com/the-proper-way-to-use-machine-learning-metrics-4803247a2578

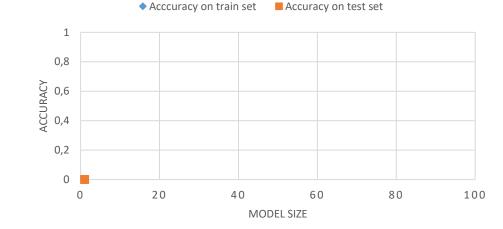
56

Home assignment

Model complexity (e.g. number of leafs) vs. accuracy on train and test set Datasets:

- A-greater-then-B.csv
- Another reasonably sized classification dataset from http://file.biolab.si/datasets/

You can start from the samples of code from the gitlab repository http://source.ijs.si/pkraljnovak/DM course



ACCURACY VS. MODEL COMPLEXITY